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Numerical simulation of incompressible flows 
within simple boundaries: accuracy 
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Galerkin (spectral) methods for numerical simulation of incompressible flows 
within simple boundaries are shown to possess many advantages over existing 
finite-difference methods. I n  this paper, the accuracy of Galerkin approximations 
obtained from truncated Fourier expansions is explored. Accuracy of simulation 
is tested empirically using a simple scalar-convection test problem and the 
Taylor-Green vortex-decay problem. It is demonstrated empirically that the 
Galerkin (Fourier) equations involving Np degrees of freedom, where p is the 
number of space dimensions, give simulations at least as accurate as finite- 
difference simulations involving ( 2 N ) p  degrees of freedom. The theoretical basis 
for the improved accuracy of the Galerkin (Fourier) method is explained. In  
particular, the nature of aliasing errors is examined in detail. It is shown that 
‘aliasing’ errors need not be errors at all, but that aliasing should be avoided in 
flow simulations. An eigenvalue analysis of schemes for simulation of passive 
scalar convection supplies the mathematical basis for the improved accuracy of 
the Galerkin (Fourier) method. A comparison is made of the computational 
efficiency of Galerkin and finite-difference simulations, and a survey is given of 
those problems where Galerkin methods are likely to be applied most usefully. We 
conclude that numerical simulation of many of the flows of current interest is 
done most efficiently and accurately using the spectral methods advocated here. 

1. Introduction 
This paper compares Galerkin (spectral) methods with finite-difference methods 

for the numerical simulation of incompressible flows within simple boundaries. 
An introduction to Galerkin flow approximations and to methods to implement 
them efficiently is given in Orszag (197 1 a). All the Galerkin approximations used 
in the present paper are obtained from Fourier expansions. We show that, if a 
given number of degrees of freedom is used to represent an approximate solution 
of the NavierStokes equations, the Galerkin (Fourier) procedure gives results 
that are substantially more accurate than are obtained by existing finite- 
difference methods. Also, in those important special applications where fast 
transform methods apply (Orszag 1969, 1970, 1971a, b;  Patterson & Orszag 
197 l), the Galerkin approximations are implementable roughly as efficiently 

t Permanent address : Department of Mathematics, Massachusetts Institute of Tech- 
nology, Cambridge, Massachusetts 02139. 
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as finite-difference simulations involving the same numbers of degrees of 
freedom. Hence, to achieve a reasonable standard of accuracy, the Galerkin 
approximations require considerably less computer memory storage and some- 
what less computer time than do finite-difference approximations. 

The conclusions reached in the present paper concerning the relative efficiency 
and accuracy of Galerkin approximations to flows within periodic rectangular 
boundaries appear to apply with even greater force to Galerkin approximations 
to flows within slabs, spheres, and cylinders with rigidno-slip or free-slip boundary 
conditions. Preliminary results obtained using Chebyshev series approximations 
to flows within no-slip boundaries (Orszag 19716) indicate improvement in 
accuracy with little cost in efficiency relative to finite-difference methods, in 
close analogy with the periodic boundary condition results presented here. 
Furthermore, there may be significant loss of accuracy by the various kinds of 
special difference approximations used to impose the boundary conditions : the 
Galerkin (Chebyshev) approximations account for the boundary conditions with 
infinite-order accuracy. A full account of the comparison between Galerkin 
(Chebyshev) approximations and finite-difference approximations will be given 
later. 

In  $2, we present empirical computational evidence for the accuracy of 
Galerkin approximations applied to a simple two-dimensional scalar convection 
problem that has become a rather standard test problem for numerical methods 
(Crowley 1968;Molenkamp 1968;Burstein &Mirin 1970).In $3,we present further 
empirical comparisons of accuracy for a three-dimensional vortex-decay problem 
(Taylor & Green 1937; Goldstein 1940; Orszag 1971~) .  In  $4 we explain some 
theoretical reasons for the relative accuracy of Galerkin approximations over 
finite-difference approximations. The principal source of inaccurate results with 
finite-difference schemes is phase error; the Galerkin approximations discussed 
here have essentially no phase errors. In  $ 5 we give a more satisfactory theoretical 
treatment of accuracy for simulations of passive scalar convection. In  particular, 
it is explained why the accuracy of Galerkin simulations deteriorates less rapidly 
with time than the accuracy of finite-difference simulations. Finally, in $ 6  we 
compare the computational efficiency of Galerkin and finite-difference simula- 
tions. In  $6  we also indicate how Galerkin methods may usefully be applied in 
conjunction with finite-difference methods for accurate simulation of a wide 
variety of incompressible flows. 

Before proceeding, it is appropriate to comment on the sense in which we test 
accuracy of simulation in this paper. Suppose that an approximate solution is 
sought to an initial-value problem for the system of m partial differential 
equations, 

where v = (vl, w2, ..., vm), x = (xl, x2, ..., 5,) and F(v, x, t )  is a partial differential 
operator involving derivatives of v(x, t )  in n space dimensions. Here we mean 
accuracy of simulation to signify accuracy of representation of F(v, x, t ) ,  not 
accuracy of evaluation of av/at. For all the methods described herein, &/at in 
(1.1) is evaluated by finite-difference approximation, and (1.1) is solved as a 
marching problem in time. In  the simulations reported below, the time step is 

~ v ( x ,  t ) /at  = F(v, X, t ) ,  (1.1) 



Numerical simulation of incompressible JEows 77 

chosen sufficiently small that there is no appreciable error due to time dis- 
cretization. 

The significance of space differencing errors owes to the fact that, while 
halving a time step requires double the number of computations to evolve (1.1) 
some fixed finite time interval, halving a space-discretization interval requires 
at least a factor 2"fl as many computations. (The factor 2"+l is accounted for by 
the number of points of the space mesh being increased by a factor 2", and the 
time step required for numerical stability of the fihte-difference approximation 
being halved due to the refinement of the mesh.) With a three-dimensional 
simulation, halving the space-discretization interval increases the required 
computation time by at  least a factor 16, and the computer memory required 
for a marching calculation by a factor 8, while halving a time step just doubles 
the computer time. Therefore, it is generally recognized in the literature (cf. e.g. 
Roberts & Weiss 1966) that accurate space differencing is the primary requisite 
of accurate simulation of solutions of multi-dimensional partial-differential 
equations of the form (1.1). 

2. Empirical investigation of accuracy : passive scalar convection 
Two-dimensional convection of a passive scalar by a uniform rotation velocity 

is a simple model problem that gives an effective test of the accuracy of numerical 
simulations (Crowley 1968; Molenkamp 1968; Burstein & Mirin 1970). The scalar 
field (called a field of ' colour ' by Crowley) is denoted by A(x, t )  and the convecting 
velocity is v(x, t).  I n  a two-dimensional rectangular co-ordinate system, A(x,  t )  
satisfies the equation, 

which is a mathematical statement of the fact that A(x,t)  remains constant 
along particle orbits. The velocity field v(x, t )  is assumed incompressible, so that 
a stream function $(x, t )  may be introduced with 

(2.2) 

(2.3) 

where J( -, - ) is the two-dimensional Jacobian. Uniform rotation about the origin 
with angular velocity i2 (positive for counter-clockwise rotation) corresponds to 
the stream function, 

(2.4) 
The initial conditions A(x, 0) are chosen as 

aA(X,t)/at = -v(x,t) .VA(x,t) ,  (2.1) 

' U 1 k  t )  = a$@, t)/ax,, %(X, t )  = - a$@, W x , .  
In terms of $(x, t ) ,  (2.1) becomes 

Wx, q /a t  = J ( $ 7  A ) ,  

$(x, t )  = - g2x2 (x2 = x! + xi). 

where r is a positive parameter and 

Here (xo, 0) is the centre of the conical distribution (2.5). In  most of the 
calculations reported below xo = - 4. The initial scalar field (2.5) is plotted in 

X2 = (x1-xo)2+x;. (2.6) 
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three-dimensional (q, x2, A )  perspective in figure 1 (a) : the initial A field has the 
shape of an inverted cone of base radius r centred at  the point ( - 4,O). A top view 
of the same cone is shown in figure 1 ( b )  in which the contours A = 0.2, 0.4, 0.6, 
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In  the exact solution of (2.3) with (2.4), (2.5), the centre of the inverted cone 
in figure 1 (a) ,  ( b )  rotates about the origin with angular velocity 52, while the cone 
itself undergoes no change of shape. This solution is used below to test various 
numerical schemes. First, it is necessary to modify the solution slightly by 
imposing the periodic boundary conditions, 

v(x+ 2n, t )  = v(x, t ) ,  A ( x +  2x1, t )  = A(x, t ) ,  (2.7) 

where n has integral components. If r < 4 (with xo = - i), the periodic boundary 
conditions do not disturb the solution in the sense that, within the square 
- 1 < x, < 1 (a = 1,2),  the conical distribution (2.5) rotates uniformly about 
x = 0 without change of shape. Applying periodic boundary conditions to 
v(x,t) causes no difficulty for an inviscid convecting fluid: the rotation field 
(2.4) reproduced periodically does not allow fluid to be created or destroyed 
at the boundaries of the periodicity box (i.e. V.V = 0) ,  although there are 
inhitely thin shear layers at  the box boundaries. 

The three numerical schemes that are compared for accuracy here are the 
second- and fourth-order Arakawa schemes (Arakawa 1966,1970) and a Galerkin 
approximation using Fourier expansions. Properties of these schemes are stated 
in 0 2 (i)-(iii) below. 

(i) Second-order Arakawa scheme 

Arakawa’s (1966, 1970) scheme was chosen as a representative and popular 
second-order difference method. Let AYk = A(x,, x2, t), $7k = $(xl, x2, t )  when 
x1 = jAx - 1, x2 = kAx- 1, t = nAt, where Ax, At are the space and time dif- 
ferences, respectively. The space grid is termed N x N i f  Ax = 2/N, so that there 
are N grid points along the z1 and x2 axes lying within the periodicity square. 
The second-order Arakawa space-differencing scheme approximates the Jacobian 
by 

J7k = (1/12A22) [$y+l ,k(Azk- l+  A7+l,k-l - A ? k + l - A r + l , k + l )  

+ @?-I, k ( A z  k+l  + k + l  - A? k-1- k-1) 

+ @i”,k+l(A?+l,k +A?+l ,k+ l -A7- l , k -A7- l , k+ l )  

+ @? k-l(AT-l,k + k - l - A ~ + l , k - A y + l  k-1) 

+ @y+1, k+l(A?+l,k - ’2 k+l)  + $ ~ + l , I ~ - l ( ~ ~  Ic-1- Ay+l ,k )  

f $7-1, k + l ( A z  k+l  -A?-l, k) f $~-1,k-1(A7-1,k-A~k-1)1. (2.8) 

Equation (2.3) is solved numerically using (2.8) to approximate the Jacobian at 
grid points and ‘leapfrog ’ (or mid-point rule) time differencing (Richardson 1910) 

A$$’ = An-‘ i k  + 2 A t J y k ,  (2.9) 

to march forward in time. The truncation error of the scheme (2.9) with (2.8) 
is O(At2) + O(Ax2). The scheme is termed second-order, because the error involved 
in space differencing is @Ax2). All the results reported in this paper were obtained 
using second-order time differencing, but, as noted in § 1, time steps were always 
so small that time-differencing errors are negligible. 
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ferencing was used instead of leapfrog. The Adams-Bashforth scheme is 
In  some of the calculations reported in $02, 3, Adams-Bashforth time dif- 

AF$l= An j k  +$At J1z Ik - +At J F - 1  2k 2 (2.10) 

which also gives errors of order O(At2).  Lilly (1965) showed that, while the leap- 
frog method is susceptible to ‘weak instability’ where the solutions at  odd and 
even time steps become uncoupled, the Adams-Bashforth method is not sus- 
ceptible to this instability. However, we have discovered by numerical experi- 
ment that, to achieve given accuracy, the Adams-Bashforth method requires 
a time step roughly half that of the leapfrog method. The truncation error in 
aA/at for the Adams-Bashforth method is asymptotically - +x(At)2 8 3 A l a t 3  as 
At -+ 0, while the truncation error of the leapfrog scheme is asymptotically 
- Q ( A t ) 2 i 3 3 A / 8 t 3 .  It seems that leapfrog differencing is more efficient and the 
weak instability can be removed by averaging over neighbouring even and odd 
time steps every 100 time steps or so. 

The Arakawa scheme (2.8), (2.9) has the property that, in the limit At -+ 0, Ax 

is conserved in time, when the boundary conditions are periodic. The Arakawa 
scheme also conserves ZAjk, independently of the size of At, Ax. We say that the 
quadratic quantity (2.11) is ‘semi-conserved’, because it is conserved in the 
absence of time-differencing errors. These conservation properties are analogous 
to the exact conservation of IA2 dx, IA  dx by (2.3). 

Combination of the Arakawa difference approximation (2.8) with the implicit 
Crank-Nicolson time-differencing scheme (Crank & Nicolson 1947)) 

fixed, ‘ j ,  k ( A y k ) 2  (2.11) 

An+1= j k  A& + AtJT$*, (2.12) 

where Jy$* is obtained by using = + A r k ) ,  @?$* instead of Ayk, $Tk 

in (2.8)) gives a scheme that conserves (2.11) exactly for any At. Conservation 
of ZA2 is important, because it ensures that the numerically determined values 
of A are bounded. However, the Crank-Nicolson scheme (2.12) is difficult to 
implement in the present case, while the easily implemented leapfrog scheme 
only semi-conserves (2.11), so that there is no absolute guarantee that the 
numerical results are bounded for all time. 

In  practice, leapfrog time-differencing with sufficiently small At (usually 
At < Ax/vmax, where vmax = max Iv(x, t ) l ) ,  and the Arakawa approximation (2.8) 
gives a stable numerical scheme for any fixed finite time interval. The stability 
of the Arakawa scheme is usually much greater than that of centred-difference 
approximations with no quadratic semi-conservation properties (cf. Grammelt- 
vedt 1969). Schemes with no quadratic semi-conservation properties may be 
unstable due to aliasing errors. 

Another second-order spatial difference scheme has also been examined, viz. 
second-order space-differencing of the primitive equation (2.1) on a staggered 
grid (Lilly 1965). The approximation to - V .  V A  = - V . (vA) at the grid point 

j, kis 1 
JTk = K~ [UT- g, k ( A y - 1 ,  k + A 8)  - Uy+$, k ( A  yj  + A?+”,, k) 

f v ~ k - * ( A ~ k - l $ .  A y k ) - v r k + g ( A i ” , +  A z k + l ) l ,  (2.13) 
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where the 2,-component of velocity, denoted by u in (2.13), is stored at  the grid 
points j + 3, k and the x,-component v is stored at j, k + +. Alternatively, if u, v 
are stored at  the same grid points as A ,  i.e. j, k, then we may define 

as the values of u, v on cell boundaries. If the velocity field is incompressible in 
the sense that 

1 
[(~j+a, - uj-4, k) + (vj, x.++ - vj, = 0, 

then (2.13) semi-conserves &I2. 
In general, we have found that (2.8) and (2.13) give results that are usually 

within 5 % of each other, with the staggered-mesh scheme (2.13) usually more 
accurate. The improved accuracy of the staggered-mesh scheme is explained by 
the fact that it is not necessary to use finite-difference approximations to deriva- 
tives of the stream function in (2.13). However, the differences in accuracy among 
second-order schemes are much less than the differences between second order, 
fourth order, and Galerkin schemes reported below. 

It is possible to improve the results obtained by second-order schemes by 
means of Richardson's extrapolation technique (Richardson 1927; Gaunt 1927). 
Here grid-point solutions to (2.8)' (2.9) with grid spacings Ax, At and  AX, 2At, 
are combined with weight factors $, -Q, respectively, to give a fourth-order 
solution. The resulting extrapolation costs little computer time and storage, and 
usually gives very much improved results. However, the results obtained are 
still inferior to those obtained by fourth-order methods on the Ax, At grid. It 
should be noted that Richardson extrapolation gives improved values only on 
points of the  AX, 2At grid; values at other points of the Ax, At grid must be 
obtained by interpolation. Also, it  should be observed that Richardson extra- 
polation cannot be applied in conjunction with a sub-grid-scale-eddy viscosity 
coefficient of the kind suggested by Smagorinsky (1963) (see also Lilly 1967; 
Deardorff 1971), since the extrapolation treats the eddy viscous term (which con- 
tains an explicit factor  AX)^) as anerror term and formally cancels it. In  the results 
reported below, Richardson extrapolation was not used. However, it  is strongly 
recommended that any future numerical hydrodynamics calculations employing 
second-order schemes also employ Richardson extrapolation to improve their 
accuracy. 

(ii) Fourth-order Arakawa scheme 

Arakawa (1966) also devised a finite-difference approximation to JJ'jj with error 
O(Ax4) that semi-conserves (2.11). This approximation, which will not be written 
out here,? is combined with leapfrog time-differencing (2.9) to give a fourth- 
order scheme. 

t There is an error in sign in Arakawa (1966, equation (58)). All the signs within round 
parentheses should be minus signs. 
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(iii) Galerkin (Fourier) approximation 
Following the technique outlined in Orszag (1  971 a, 9 2), we seek an approximate 
solution of (2.3) of the form, 

A(x, t ,  = x A(k, t ,  ek(x), (2.14) 

wherellkll < KisdeGned,asinOrszag (1971a), tomean -.K < k, < K(a  = 1,2),  
k has integer components, K is an integer cut-off (usually a power of 2 ) ,  and 

IlkKE 

(2.15) I exp(irk.x) if - K  < k, < K (a = 1,2),  

cos (rKx,) exp   ink,^,) if k, = -K ,  - K < k, < K ,  

ek(x) = COS ( n ~ x , )  exp (irk,x,) if k, = - K, - K < k, < K ,  

cos (n-Kx,) cos (qKx2) if k, = k, = - K.  

(2.16) 

The periodicity interval 2 in both space directions in (2.7) requires that all wave- 
vectors in the Fourier series representation of A(x, t) have components that are 
integral multiples of 7r. Reality of the physical-space A(x) field requires that 

where kz = - k ,  if - K  < k, < K ,  k,* = - K  if k, = - K  (a = 1,2).  Notice that 
ek(x) satisfies (2.16) as a function of k. 

It is necessary to explain the reason for expanding A(x,t)  in terms of the 
functions ek(x), rather than in terms of pure complex exponential functions, as 
in Orszag (1971a). With the choice of (eg(x)} as expansion functions, the de- 
scription of the A field in terms of the Fourier coefficients A(k, t)  for I[ kll f K 
contains exactly as much information as the values of A(x, t )  on the 2K x 2K space 
grid x,, = ( [m- K ] / K ,  [n -K] /R) ,  m,n = 0,1 ,  .. ., 2K- 1. In fact, if 

I 
[ 4 k ,  t)l* = A@*, t ) ,  

and vice versa, as follows from (14)-( 16) of Orszag (197 1 a) using the fact that 

eg(x,,) = exp(ink.x,,) ())kJI 6 K,m,m = 0, ..., 2K-1) .  (2.19) 

Equation (2.19) states that wave-vector components equal to + K and - K are 
indistiguishable on the discrete grid x,, (a fact related to aliasing on the grid 
x,, (cf. 34)). The basis functions (2.15) allow the derivation of a consistent set 
of Galerkin equations for A(k, t )  ([lkl[ 6 K )  that maintains the reality condition 
(2.16) for all t ;  also, the 4K2 independent (real or imaginary) parts of A(k,t) 
satisfying (2.16) are equivalent to 4K2 independent real values of A(x, t )  on the 
grid xmn. On the other hand, the Orszag (1971 u)  expansion (8) contains (in two 
space-dimensions for a single scalar quantity such as A )  only (2K-  1)2 indepen- 
dent pieces of real information, not enough for inversion of A(x)  on the full 
grid x,,, while directly extending the sum in Orszag (1971u, (8)) to ljkll 6 K 
would give a set of Galerkin equations that would not maintain the reality 
conditions. 

6-2 
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Using an expansion similar to (2.14), it  is possible to approximate $(x,t) 
as a truncated Fourier series with coefficients $(k, t )  (Ilk][ 6 K )  satisfying (2.16). 
Also, the functions ek(x) have the orthogonality property that 

where n(k) = 1 if - K < k: < K ,  n( - K )  = +. The Galerkin procedure of Orszag 
(1971a, $2) applied to (2.3) using the expansion (2.14) and the orthogonality 
property (2.20) gives the equations, 

Property (2.16) is preserved in time by (2.21), since [I(klp, q)]* = I(k*lp*, 9"). 
It may easily be verified that 

(b )  

FIGURE 3 (a)-(b). For legend see facing page. 
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where barred wave vectors are obtained from their unbarred counterparts by 
interpreting a component k, equal to - K as La equal to either + K or - K .  For 
example, if p = ( - K ,  - K ) ,  k,  = K + ql, 7c, = K + q,, and - K < k,, k,, ql, qz < K ,  
then I = - $7r2K(ql + q,);  if k = ( - K ,  k,), p = (pl, - K ) ,  K =pl + ql, Ic, = - K + q2, 
and - K < k2,pl,ql,q2 < K ,  then I = -Qi?.2(Kql+plq,). 

Aside from interactions with modes having a t  least one component - K ,  the 
right-hand side of (2.21) equals 

7r2 x (91 P2 - q2 Pl) $(P, t )  A (9, t ) ,  (2.24) 
p+q=k 

IIPll. IIQll<K 

where llkjl < K means - K  < k, < K (a = 1,2).  Therefore, aside from the 
slightly more complicated interactions with wave-vectors having a component 
- K ,  the right-hand side of (2.21) involves two convolution sums, viz. the 

(4 
FIGURE 3. Three-dimensional (zl, z2, A )  perspective plot of the A(x, t )  field obtained after 
1 revolution using (a) second-order Arakawa scheme on 32 x 32 space grid (see figure 2 ( a )  
for top view); ( b )  fourth-order Arakawa scheme on 32 x 32 space grid (see 2 ( c ) ) ;  ( c )  fourth- 
order Arakawa scheme on 64 x 64 space grid (see 2 (cl)) ; ( d )  cut-off Fourier-expansion scheme 
on 32 x 32 space grid (see 2 ( e ) ) .  
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convolution of ipp@(p) withiq,A(q) andip,@(p) withiq,A(q). These convolution 
sums are most efficiently evaluated by the transform methods of Orszag (1971 a). 
In  fact, the right-hand side of (2.21) for Ijkll < K can be evaluated by the trans- 
form method with essentially no additional work required to include exactly 
the interactions with wave vectors having components equal to - K .  This latter 
result is explained in the appendix. The principal result of the appendix is that 
the right-hand side of (2.21) can be evaluated in 27 real (or half-complex) dis- 
crete Fourier transforms on K x K points, if the Fourier transforms of ip,@(p), 
ip,@(p) are computed and stored before the start of the calculation of A(k, t ) .  

The numerical scheme for solution of (2.21) is completed by using leapfrog 
time differencing (2.9) to approximate aA/at. The initial conditions A(k, 0 )  are 
determined from (2.5) by (2.18), while the physical-space A(x, t )  field is recon- 
structed on the 2R x 2K space grid x, from (2.17) using the solution to (2.21). 

It can easily be shown that (2.21) with (2.22) semi-conserves 

A(O,O, t ) ,  ;I; N k , )  n(k,) t )  A$*, t ) ,  (2.25) 

which are the Fourier space analogs of !A dx, !A2dx, respectively. The quadratic 
semi-conservation property (2.25) assists the stability of numerical solution of 
(2.21), so that, if At is small enough, there is no numerical instability of (2.21), 
using leapfrog time differencing for any fixed finite time of evolution. 

If the Galerkin procedure is applied to (2.1) directly using cut-off Fourier 
expansions of v(x, t ) ,  the results are improved slightly over (2.21). However, to 
facilitate direct comparison with the Arakawa schemes, these Galerkin equations 
(which may be implemented as efficiently as (2.21)) are used only in $ 5 .  

Another modified Galerkin approximation gives greatly improved results. 
If the problem (2.3) with (2.4) is reformulated in polar co-ordinates ( r ,  8)  with 
the origin as pole, then 

aA(r, 8, t) /at = - f iZA(r ,  8, t)/a8. (2.26) 

If the Galerkin procedure is applied using an expansion of A(r,  8, t )  in the func- 
tions exp ( i d ) ,  i.e. a complex Fourier series in 8, then the only error in simulation 
is time differencing. However, to use results obtained in this way for comparison 
with results obtained by finite-difference methods is very unfair. The functions 
exp (in@ are obviously well suited to the solution of (2.3) with the special stream 
function (2.4): the functions exp (in@ are eigenfunctions of fi aA/a8. Equation 
(2.26) is not used in the sequel. On the other hand, the expansion (2.14) is not 
exact, the functions ek(x) bear no special relation to the eigenfunctions of (2.3) 
with (2.4), and it is not trivially evident that (2.21) gives a good approximation 
to A(x,  t ) .  The comparison of the results given by (2.21) with results given by 
finite-difference approximations is a fair test of the accuracy of the methods. 

llkll<K 

(iv) Results 

Contour plots of A(x, t )  using the schemes described in 3 2 (i)-(iii) above with 
r = f in (2.5) are shown in figures 2 (u)-(f), while the results of calculations with 
r = & are contoured in figures 4(a),  ( b ) .  The results for fixed cone radius r 
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obtained using different numerical schemes and grids are suitable for critical 
comparison of the schemes and grids. 

The contours of the cone with r = convected according to the second-order 
Arakawa scheme (2 .8)  on 32 x 32 space grid are shown in figure 2 ( a )  at times of 
$and 1 revolution of the convectingvelocity (2.4), i.e. at t = n/(2Q) andt = 2n/SZ. 

L 

- 1  
- 1  7 x 

- r=n/(2Q) Fourth-order 

r =n/(2Q) Second-order 

- 1  

r=n/(2Q) Fourth-order 1 1  1 r =n/(2Q) -fv Second-order 

- 1  1 
31 - 1  32 

FIGURE 4. Contours of A(x, t )  obtained after (a) 0, 4, and 1 revolution, using cut-off 
( K  = 8) Fourier-expansion scheme on 16 x 16 grid; (a) & revolution, using second-order 
Arakawa scheme on 64 x 64 grid and fourth-order Arakawa scheme on 32 x 32 grid. 
Initially, r = &. 

In this figure and succeeding figures, missing contours are those for the highest 
A values, e.g. A = 0.8 and A = 0.6 after 1 revolution in figure 2 (a). The contours 
obtained after B revolution using the second-order Arakawa scheme (with r = t) 
on a 96 x 96 space grid are shown in figure 2 (b). The results presented graphically 
in figures 2 ( a ) ,  (b), together with the quantitative comparisons provided in 
table 1, show that refinement of the mesh by a factor 3 in each space direction 
(9 times as many grid points) gives surprisingly little improvement in the results, 
especially in the maximum of A (x) which should always be 1. 

Results obtained using the fourth-order Arakawa scheme on a 32 x 32 space 
grid are plotted in figure 2 ( c )  at times of 1 and 2 revolutions. The contours 
obtained using a 64 x 64 grid are shown in figure 2 (d)  at times of & and 1 revolution. 

Comparison of the contours in figures 2(a), (b)  with those in figures 2(c) ,  (ti) 
shows the important improvement in the quality of the results obtained using 
fourth-order schemes rather than second-order schemes. In  fact, comparisons 
closely analogous to those just made have led many numerical analysts (e.g 
Roberts & Weiss 1966; Crowley 1968; Molenkamp 1968; Fromm 1969; Burstein & 
Mirin 1970; Price & Varga 1970) to suggest the abandonment of second-order 
schemes in favour of those of fourth-order for the numerical simulation of solu- 
tions of multi-dimensional partial-differential equations. (Presumably, Richard- 
son extrapolation of second-order solutions is more efficient for one-dimensional 
problems.) Our results support the use of fourth-order methods. However, an 
important qualification will be made at the end of $4. 
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The results for A(x, t )  obtained using the Galerkin (cut-off Fourier-expansion) 
approximation (2.21), with (2.17) and (2.18) to translate the results onto a 
discrete space-grid, are contoured in figures 2 ( e ) ,  (f). With cut-off K = 16, the 
Fourier-space results translate into values on a 32 x 32 physical-space grid. 
Contour plots of A(x, t )  determined by the Galerkin method with cut-off K = 16 
are shown in figure 2 ( e )  at times of and 1 revolution. With cut-off K = 8, con- 
touring is done on a 16 x 16 space grid so that even the contours of A at t = 0 are 
not closely circular. In  figure 2 (f), we plot the contours of A when K = 8 at  times 
of 0, 1, and 2 revolutions of the convecting velocity field. 

Numerical 
method 

Arakawa 
Arakawa 
Arakawa 
Arakawa 
Arakawa 
Arakawa 
Arakawa 
Arakawa 
Fourier 
Fourier 
Fourier 
Fourier 
Fourier 
Fourier 

Order of 
scheme 

Second 
Second 
Second 
Fourth 
Fourth 
Fourth 
Fourth 
Fourth 
Infinite 
Infinite 
Infinite 
Infinite 
Infinite 
Infinite 

Mesh 

96 x 96 
32 x 32 
32 x 32 
64x 64 
64 x 64 
32 x 32 
32 x 32 
32 x 32 
32 x 32 (K  = 16) 
3 2 x 3 2  (K  = 16) 
16x 16 ( K  = 8) 
16 x 16 (I< = 8) 
I6 x 16 ( K  = 8 )  
16x 16 ( K  = 8) 

Number Maximum 
of at a 

quarter- grid 
revolutions point 

1 0.85 
1 0.79 
4 0.51 
1 0.92 
4 0.84 
1 0.89 
4 0.83 
8 0.74 
1 0.98 
4 0.98 
1 0.97 
4 0.96 
8 0.89 

12 0-79 

Minimum 

- 0.04 
- 0.13 
- 0.23 
- 0.03 
- 0.04 
- 0.05 
- 0.10 
- 0.15 
- 0.02 
- 0.02 
- 0.03 
- 0.04 
- 0.07 
-0.11 

TABLE 1 .  Accuracy of numerical simulation of scalar convection 

Lag of 
maximum 

(in 
radians) 

0.08 
0.19 
0.44 
0.03 
0 
0 
0.08 
0.08 
0 
0 
0 
0 
0 
0 

Three-dimensional perspective plots of (xl, x2, A(x, t ) )  are shown in figures 3 (a)- 
(d) .  These figures are drawn after 1 revolution from the results obtained by the 
second-order Arakawaschemeona 32 x 32grid (figure 3 (a) ) ,  fourth-order Arakawa 
scheme on a 32 x 32 grid (figure 3 (b ) )  and on a 64 x 64 grid (figure 3 (c)), and the 
cut-off Fourier-expansion scheme with cut-off K = 16 (figure 3 (d) ) .  It is strikingly 
evident from figures 2 (a)-3 ( d )  that results obtained using the cut-off Fourier- 
expansion scheme on a 32 x 32 space grid (cut-off K = 16) are at  least as good as 
those obtained using the fourth-order scheme on a 64 x 64 grid, and significantly 
better than those obtained by the fourth-order scheme on a 32 x 32 grid and the 
second-order scheme on 32 x 32 and 96 x 96 grids. This appraisal of the relative 
accuracy of the various schemes is supported by the quantitative results listed 
in table 1. If the simulation were exact, the maximum at a grid point after any 
integral number of quarter-revolutions would be 1-0, the minimum would be 0 
(since A(x,  t )  = 0 outside the cone shown in figure l), and the lag of the maximum 
would be 0. Here the lag of the maximum is the angular lag (in radians) of the 
(interpolated) maximum of A(x, t )  from its exact position. In  all the calculations 
reported in table 1, radial displacements of the maxima are small. 
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The ‘wakes of bad numbers’ that lag the counterclockwise rotation of the 
cone in figures 3 (a)-(c) should be susceptible to theoretical explanation. Such an 
explanation is likely related to the fact that hite-difference schemes (i) and (ii) 
have mostly lagging phase errors (cf. $4), so that some of the information needed 
to reconstruct the cones at  later times lags the correct position of the cones. 

When r = &, the initial A(x, 0 )  field on a 16 x 16 space grid is zero everywhere 
except at the grid point located at  ( - +, O ) ,  where A is initially 1. Such a point- 
excitation solution to the linear equation (2.3) is a Green’s function (fundamental 
solution) that may be used as a building block out of which the general solution 
to (2.3) may be constructed. Numerical methods are not very well adapted to 
direct calculation of Green’s functions because of the large gradients involved. 
The fidelity of a numerical simulation of (2.3) with (2.4), (2.5) deteriorates with 
decreasing r .  Contours of the results of numerical calculations for r = & using 
the three numerical schemes outlined above are shown in figures 4(a) ,  (b).  The 
contours of A(x,t) after 0, $, 1 revolution obtained using the cut-off Fourier- 
expansion scheme on a 16 x 16 grid (cut-off K = 8) are shown in figure 4(a);  
the contours at t = 0 are included to illustrate how the contour plotter treats 
this singular case. The contours obtained after 2 revolution by the second-order 
scheme on a 64 x 64 grid and the fourth-order scheme on a 32 x 32 grid are shown 
in figure 4 ( b ) .  After revolution, the maximum of A(x) determined by the 
second-order scheme is 0.27, the fourth-order scheme 0.21, and the Fourier- 
expansion scheme 0.73. After 1 revolution, the second- and fourth-order schemes 
give maxima 0.12 and 0.16, respectively, so that no contours remain to be 
plotted. With the cut-off Fourier-expansion scheme, the maximum of A(x) is 
0.67 after 1 revolution. 

It seems a safe conclusion from the numerical results reported above that the 
cut-off Fourier-expansion scheme offers significant improvement in accuracy 
in comparison with finite-difference schemes. For the scalar convection problem 
studied here, it seems that to achieve a reasonable standard of accuracy second- 
order schemes require at  least twice as many grid intervals in each space direction 
as fourth-order schemes, which themselves require at  least twice as many inter- 
vals in each direction as the cut-off Fourier-expansion scheme. 

Comparisons of accuracy between spectral and finite-difference methods made 
previously (cf. e.g. Ellsaesser 1966) were, in the author’s opinion, inconclusive. 
These early studies concerned principally energy conservation properties of 
surface harmonic representations of flows on the surface of a sphere and com- 
parisons with real meteorological data under uncontrolled computational con- 
ditions; these studies did not lead to estimates of the discrete-grid and spectral 
resolutions necessary to achieve reasonable standards of accuracy. 

Perhaps the most remarkable feature of the spectral method that is brought 
out by the cone problem studied here is the result that the cone is better localized 
in space using the cut-off Fourier-expansion scheme than by fiiite-difference 
schemes formulated directly in physical space. Graphical evidence of this property 
is provided by figures 3(a)-(d),  while the grid point minima listed in table 1 
provide quantitative evidence. It is remarkable that the cone is better localized 
by expanding the initial grid-point excitation in a discrete Fourier series, evolving 
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the Fourier coefficients to a later time, and then reconstituting the grid-point 
field out of the evolved Fourier coefficients, than by direct evolution of the 
grid-point field using a finite-difference method. In  other words, physical-space 
intermittent flow features (local structures with large excitations) seem to be 
more easily followed in terms of their Fourier coefficients than directly in 
physical space ! Some reasons for this attractive, but perhaps unexpected, feature 
of the cut-off Fourier-expansion method are given in $4. Essentially, the point 
is that Fourier expansion allows much better interpolation between grid points 
than is given by the local grid-point values alone. 

The property, that the Fourier coefficients (collective co-ordinates measuring 
the excitation in a certain scale over the whole flow) provide good descriptions 
of local flow structure, is subject to further test by modifying the convecting 
stream function (2.4) to 

(2.27) 

for x within the periodicity square - 1 < x, < 1 (a = 1,2)  and maintaining (2.7) 
for other x. The velocity field determined by (2.27) is such that, within each 
periodicity square, there is a core of radius a of uniform rotation with angular 
velocity Q, while there is no motion outside the core. If r + a < xo, then the cone 
of base radius r centred initially at  (xo, 0 )  is not disturbed by the velocity field 
given by (2.27); the cone remains stationary, The results obtained by the cut-off 
Fourier-expansion scheme on a 32 x 32 grid (cut-off K = 16) using (2.27) with 

radius a just touches the outside lip of the cone, so that, if the simulation were 
exact, the mne would remain centred at ( - 8 , O ) .  The contours in figure 5 are 
plotted at t = n/Q, when the inner core has rotated through 180'. It is apparent 
that the cut-off Fourier-expansion scheme successfully keeps local physical- 
space structures localized during time evolution, even in the presence of the 
sharp shear layer provided by (2.27). 

In  summary, the results obtained in $ 2 suggest that: (a)  on a given grid, the 
cut-off Fourier-expansion scheme gives results significantly more accurate than 
those of finite-difference methods; and ( b )  the cut-off Fourier expansion method 
accurately describes local flow structures. These comparisons seem to hold true 
rather generally for Galerkin approximations of infinite-order accuracy (i.e. for 
schemes in which the truncation error decreases faster than algebraically with 
the number of degrees of freedom except for time-differencing errors). In  $6  
we compare the computational efficiency of the various numerical schemes dis- 
cussed above. 

x o = - 8 ,  , = a  4, a = 3  are contoured in figure 5.  The inner rotating core of 

3. Empirical investigation of accuracy : Taylor-Green vortex 
The Taylor-Green vortex-decay problem (Taylor & Green 1937; Goldstein 

1940; Orszag 1971 a) involves solution of the Navier-Stokes equations, 

&(x, t )p t  = - v(x, t )  .Vv(x, t )  - Vp(x, t )  + Y P V ( X ,  t ) ,  
v. v(x, t )  = 0, 

(3.1) 

(3.2) 
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Although the streamlines of the initial velocity field (3.3) lie in planes normal 
to the x3 axis, the flow is inherently three-dimensional. Vortex lines are initially 
twisted so that they may induce a velocity field to stretch themselves. Because 
of the possibility for vortex stretching, the Taylor-Green problem provides 
insight into the mechanism of enhanced energy dissipation in a turbulent flow. 
In  fact, this was the motivation for new work on the problem (Orszag, 
manuscript in preparation). However, the importance of the Taylor-Green 
problem for the present paper lies in the fact that the motion involves an energy 
cascade, so that appreciable 'aliasing' (cf. $4) errors may result. 

The numerical approximations to (3.1)-(3.3) that are compared for accuracy 
here are the following: 

- - - t=n/Q - - - 
- - - - - - - - - - - - - - - - - - 

' 1 ' 1 1 ' 1 1 " 1 ' ' 1 1 1 ' l l l ' l l l l l l l '  

(i) Second-order centred 2Ax-difference scheme 

Here the velocity and the pressure are recorded a t  the grid points iAxl, jAx2, 
kAx,, where Axl, Ax,, Ax3 specify the grid intervals in the xl, x2, xs directions, 
respectively. The centred 2Ax-difference approximation to 2p/2x,, e.g. is 
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(ap/axl)iik z (pi+l, j,k - ~ ~ - , , ~ , ~ ) / ( 2 A x ~ ) ,  with the difference approximation to the 
other terms in the Navier-Stokes equations constructed analogously. The pres- 
sure field is determined using the fast Fourier transform to solve exactly the 
finite-difference analog of the Poisson equation V2p = - V. (v.  Vv) [which 
follows from (3.1) using (3.2)]. This scheme for numerical solution of the Navier- 
Stokes equations is second-order. It is well known that scheme (i), described 
here, may exhibit aliasing instabilities (Phillips 1959). However, if the Reynolds 
number is sufficiently small, then no instability is observed using leapfrog time 
differencing for the convective and pressure terms, and an explicit forward time 
step (with error O(At)) for the viscous term. Since the velocity and length scales 
of the initial velocity field (3.3) are each of order 1, it follows that a convenient 
Reynolds number for the Taylor-Green vortex is simply 

R = l / v .  

(ii) Second-order staggered-mesh scheme 

The staggered-mesh scheme (Fromm 1963; Fromm & Harlow 1963; Lilly 1964, 
1965; Harlow & Welch 1965; Orszag 1969; Williams 1969; Deardorff 1970), 
velocities are defined at  cell boundaries and pressures at cell centres. Thus, v, 
is discretized so that its values are recorded at the points (i + 8 )  Ax,, jAx,, kAx,, 
v, at the points iAx,, ( j  + 4) Ax,, kAx,, v3 a t  iAx,, jAx,, (k + 4) Ax3, and p a t  
iAxl, jhx,, kAx3. The staggered-mesh approximation to the Navier-Stokes equa- 
tions is written out in the references cited above. The resulting scheme is second- 
order, and has a number of attractive features in comparison with the centred 
2Ax-difference approximation. The staggered-mesh approximation semi- 
conserves momentum and energy, viz. 

are conserved in the absence of viscous dissipation and time-differencing errors. 
The semi-conservation of energy assists in the numerical stability of the scheme. 
Also, since derivatives in the staggered mesh are approximated by differences 
over the mesh lengths Ax,, Ax,, Ax3, while in the 2Ax-difference scheme derivatives 
are approximated by differences over  AX,,  AX,,  AX,, errors are quantitatively 
reduced by the staggered mesh. The improved accuracy due to the compactness 
of the staggered mesh is confirmed by the results stated below. 

(iii) Cut-off .Fourier-expansion method 

This method involves solution of the Fourier-transformed Navier-Stokes equa- 
tions using the initial conditions (3.3). The formulation and methods for solution 
of these equations is described in detail elsewhere (Orszag 1 9 7 1 ~ ) .  

A sensitive test of the accuracy of the solution is given by the quantity Q ( t ) ,  
defined as the mean-square vorticity at time t ,  where the mean is taken as a 
spatial average over the cube of periodicity. The dominant contribution to Q(t) 
comes from small-scale structures. The ratio Q(t)/Q(O), which measures the 
enhancement of energy dissipation due to the cascade to small scales, is plotted 
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FIGURE 6. Enhancement of mean-square vorticity, n(t)/n(O), V8. time for the Taylor- 
Green vortex. (a) R = 100: (i) Taylor & Green (1937), using perturbation expansions in 
powers of time. (ii) cut-off (K  = 8 and K = 16) Fourier-expansion method; (iii) staggered- 
mesh scheme on a 16 x 16 x 16 grid; (iv) centred 2As-difference scheme on a 16 x 16 x 16 
grid. ( 6 )  R = 200: (i) Taylor & Green (1937), using perturbation expansions in powers of 
time; (ii),  (iii) cut-off Fourier-expansion method with K = 16, 8, respectively; (iv), (v) 
staggered-mesh scheme on 32 x 32 x 32 and 16 x 16 x 16 space grids, respectively. 
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as a function of time in figures 6(u), (6). I n  the calculations summarized in 
figure 6 (u), the evolution of the Taylor-Green vortex is calculated a t  a Reynolds 
number R ( = l /u )  = 100, while in figure 6 ( b )  the Reynolds number of the calcula- 
tions is 200. The curves labelled (i) in both figures show the results obtained by 
Taylor & Green (1937), using perturbation expansions in power oft. For t small, 
the perturbation-theory results should be asymptotic, but they break down 
before the time that the curves (i) break off in the figures. 

In  figure 6 (a) ,  curve (ii) shows the results obtained at  R = 100 using the cut-off 
Fourier-expansion method with cut-offs K = 8 and K = 16. The results obtained 
with these two cut-offs are not distinguishable on the scale of the graph, so 
it is plausible to consider both sets of results close to exact. The calculation with 
K = 8 has about as many degrees of freedom as a finite-difference calculation 
on a 16 x 16 x 16 grid, while K = 16 corresponds to a 32 x 32 x 32 grid. Curve (iii) 
is plotted using the results obtained by the second-order staggered-mesh scheme 
on a 16 x 16 x 16 grid, while curve (iv) involves the centred 2Ax-difference 
scheme on a 16 x 16 x 16 grid. The results plotted in figure 6(a) show that, on a 
16 x 16 x 16 grid at  the relatively low Reynolds number R = 100, the 2Ax- 
difference scheme gives the energy dissipation rate incorrect by nearly 100 yo 
when this rate is near its maximum, while the staggered-mesh scheme is off by 
about 25 yo, and the Fourier-space calculations are nearly exact. Even at R = 50, 
the 2Ax-difference results on a 16 x 16 x 16 grid are in substantial error. 

In  figure 6(b), curve (ii) is a plot of the results obtained using the cut-off 
Fourier-expansion scheme with R = 200 and K = 16, while curve (iii) is for the 
Fourier method with K = 8. Curves (iv), (v) are for the staggered-mesh scheme 
on 32 x 32 x 32 and 16 x 16 x 16 grids, respectively. (Curve (iv) was obtained 
some time ago using the computer facility at the Goddard Institute for Space 
Studies, New York. The curve was not continued beyond the maximum of 
Q ( t ) / Q ( O )  a t  that time.) 

It seems safe to infer from the results presented in figures 6(a), ( b )  that: 
(a)  for given numbers of degrees of freedom, the cut-off Fourier-expansion 
method is more accurate than finite-difference methods; (b) achievement of the 
accuracy of the Fourier method requires at least twice as many grid points in 
each space direction for the staggered-mesh scheme, and twice again as many 
for the 2Ax-difference scheme; and ( c )  for the same cell size, the staggered mesh 
gives more accurate results than obtained by 2Ax-differences. 

Other numerical schemes have been tested and compared with the cut-off 
Fourier-expansion method. Instead of using a second-order form for the dissipa- 
tion term uV2v in (3.1), it was thought that a fourth-order finite-difference 
approximation to V2v, together with the second-order staggered-mesh approxi- 
mation to the other terms in (3.1), would improve the results, especially for the 
small scales that dominate Q(t ) .  The results of numerical experiment showed 
only very slight improvement. 

The results of $ 2  suggest that a fourth-order approximation to (3.1) would 
improve the results. As yet, there is no published version of the staggered-mesh 
scheme, which is fourth-order and also semi-conserves the quadratic energy 
integral. On the other hand, it is not difficult to construct centred difference 
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approximations to - v . Vv - Vp that are fourth order and energetically con- 
servative. One way to achieve this is to rewrite (3.1) in rotation form as 

av(x, q ja t  = v(x, t )  x w(x, t )  - VII(X, t )  + VV2V(X, t ) ,  (3.4) 

where II = p + $v2 is the total head, and o = V x v is the vorticity. This form of 
the Navier-Stokes equations was apparently first suggested for numerical work 
by Shuman (1969). Energy is semiconserved as long as the finite-difference 
approximation to the right-hand side of (3.4) is consistent with that to (3.2) in 
the sense that Iv.  VrI d x  = [V . (vII) dx = 0 even in fmite-difference form and 
v x o is approximated as the pointwise cross-product of v with a finite-difference 
approximation to o. For v. (v x w) = 0, the rotation form of the advection 
term in (3.1) conserves energy, but not momentum, pointwise. It is straight- 
forward to make a fourth-order centred finite-difference approximation to (3.4). 
A numerical experiment using such a scheme gave results whose accuracy was 
roughly midway between the second-order ZAx-difference and staggered-mesh 
schemes. The increased accuracy due to the compactness of the staggered mesh 
evidently outweighs the advantages of fourth-order over second-order schemes, 
at least in the present application. It may be that fourth-order schemes are 
inappropriate for solution of incompressible flow problems with energy cascade. 
Although fourth-order schemes decrease first- and second-differencing errors ( Q  4), 
they may increase aliasing errors just because first derivatives are evaluated more 
exactly than in a second-order scheme (Grammeltvedt 1969; Lilly 1965). 

4. Analysis of errors in simulation 
In  Q 4 we attempt to explain why the cut-off Fourier-expansion method gives 

results that are more accurate than those obtained by finite-difference methods 
on similar grids. There are at least five errors of simulation that may be isolated 
(following, in part, Lilly 1965). They are as follows: 

(i) First-differencing (phase) errors 

The approximation of aA/ax by the finite-difference approximation, 

aA/& M [A(z+Ax) -A(~-Ax)l/(Zhx), (4.1) 

is not exact. For example, if A(x) = exp (ikx),  then the ratio of the right-hand 
side of (4.1) to the left-hand side is sin (kAx)/(kAx), which approaches 1 only for 
kAx -+ 0. For large k and finite Ax, the errors in (4.1) are appreciable. 

The effect of first-differencing errors on the solution of a partial differential 
equation is usually illustrated by the one-dimensional advection equation, 

(4.2) aA(2, t ) /at  + UaA(x, t ) / h  = 0, 

A(%, t )  = exp [ik(z - Ut)] .  

where U is a constant uniform convecting velocity (Thompson 1961). A solution 
to (4.2) is 

In  fact, if the values of A(x, t )  are given on N discrete points equally spaced by 
Ax, the one-dimensional analogs of (2.17), (2.18) show that an arbitrary excitation 

(4.3) 
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on these N points may be represented as a linear combination of the N solutions 
(4.3) with k A x  = 2rm/N( - &N 6 m < +N) ,  m integral (using cos ( k ( x -  U t ) )  in- 
stead of (4.3) if m = - +N) .  

The leapfrog centred 2 Ax-difference approximation to (4 .2 )  is 

where A? = A ( j A x ,  n A t ) ,  At is the time incremeat, and a: = UAt /Ax .  The finite- 
difference equation (4.4) is satisfied by 

AT = exp [ikjAx - inI91, (4.5) 

where sin8 = a s i n ( k A x ) .  If la:\ 6 1, then I9 is real for all k. Ineach time step, 
the exact change of phase of A ( x ,  t )  given by (4.3) is - k U A t  = - kaAx,  while the 
change of phase of (4.5) is - I9 = - sin-l [asin ( k A x ) ] .  Since IO/(kaAx) I < 1 when 
la( < 1 and Ik Ax1 6 n, it follows that the waves (4.5) Zag the true waves (4.3).? 

Second-order Fourth-order Cut-off Fourier- 
k Ax Arakawa scheme Arakawa scheme expansion scheme 

15" 0.989 1.000 1.000 
30" 0.955 0.998 1 *000 
45" 0.901 0.989 1.001 
60" 0.828 0.966 1.002 
90" 0.637 0.851 1.004 

120" 0.414 0.622 1.007 
150" 0.191 0.310 1.012 
180" 0 0 1.017$ 

t The values of 6 = O/(kaAx) are given for a = UAt /Ax  = 0.1. 
1 For k A x  = 180", 13 = 0. The number listed is lim,a,.TnS. See text. 

TABLE 2. Phase errors (8)t 

Each of the three schemes of $ 2  when applied to (4.2) with leapfrog time 
differencing is neutrally stable, in the sense that solutions of the form (4.5) exist 
with 8 real (provided 1.1 is small enough). The phase error, 6 = B/(kaAx) ,  for 
each of the three schemes of $ 2  is listed in table 2 as a function of k A x  in the 
special case a: = 0.1. For example, the cut-off Fourier-expansion method applied 
to (4.2) gives 

t )  if IkAxI < n9 
if JCAx = -n 

A(k, t + At)  = A ( k ,  t - At)  - 

so that sin 8 = ka Ax for I k:AxI < r. The values of 6 listed in table 2 show that the 
fourth-order scheme has smaller phase errors than the second-order scheme, and 
that the cut-off Fourier-expansion scheme has phase errors of less than 2 yo 
for all waves satisfying Ik,Axl < n when a = 0.1. The so-called ' 2Ax '  wave 
(vix. k A x  = n so that the wavelength is 2 A x )  is stationary (8 = 0) in all the 
methods. The 2 Ax wave is stationary even in the Fourier method, because the 
expansion function for k Ax = & r is cos (kx )  not exp ( ikx ) .  

It should be noticed that the second-order scheme has lagging phase error 
(8 < I ) ,  while the fourth-order scheme has mostly lagging errors (there is a 

t See also Orszag (1971~) .  
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region of leading phase error 6 > 1 for small k A x  for the fourth-order scheme). 
As noted in $2, the lagging phase errors provide a partial explanation for the 
wakes of bad numbers given by finite-difference approximations. 

The cut-off Fourier-expansion scheme has only leading phase errors for finite 
At, and even these disappear in the limit At -+ 0 (if Ik Ax1 < n). The latter property 
is, of course, intimately related to the fact that the cut-off Fourier-expansion 
method has spatial errors that decrease more rapidly than any finite power of 
Ax as Ax -+ 0 (if the exact solution that is being approximated is infinitely dif- 
ferentiable). Finite-difference approximations have non-zero phase errors in the 
limit At + 0. 

It is well known that numerical stability of (4.4) requires la1 < 1 (since there 
exist solutions (4.5) with k real and Im (8) > 0 when la1 > 1). Similarly, numerical 
stability of centred (or Arakawa) difference approximations with spatial error 
of order (Ax)" may be shown to require 1.1 < 1 (n = 2), 0.73 (n = 4), 0.63 (n = 6), 
0.59 (n = 8). As n -+ co, the stability limit approaches 1.1 < 11.r (slowly like n-i), 
which is in fact the stability limit for the Fourier method. Thus, for stable 
numerical simulation of convective processes using leapfrog time differencing, 
the Fourier method requires a time step n times smaller than a second-order 
scheme with the same spatial reso1ution.t This situation is improved somewhat 
in the presence of dissipation. The most unstable waves for difference approxima- 
tions with spatial error of order (Ax)" are k Ax -" 1.57 (n = 2), 1-80 (n = 4), 1.94 
(n = 6), 2.01 (n = 8), while the most unstable mode for the Fourier method is 
k Ax 21 3.14. Since dissipation selectively damps high-frequency modes, the 'most 
dangerous ' modes are preferentially damped in the Fourier method (being careful 
to treat the dissipation terms implicitly, so that they cannot cause numerical 
instabilities). 

(ii) Second-differencing errors 

These errors are associated with incorrect evaluation of vV2v by finite differences. 
Reduction of these errors is possible by use of a fourth-order finite-difference 
approximation to V2v, though, as noted in $ 3, little quantitative benefit ensues. 

There are no second-differencing errors in the Fourier-expansion method as 
the transform of vV2v is exactly - vkzu(k). The diagonal algebraic form - vk2u(k) 
makes it a simple matter to treat viscous dissipation implicitly in time in the 
Fourier method. However, this latter advantage is slight, because high-Reynolds- 
number flow simulations are usually limited by convective rather than diffusive 
stability criteria. Some comments on the treatment of non-constant diffusion 
coefficients (e.g. eddy viscosity coefficients) are made in $6. 

(iii) Incompressibility errors 

These errors are due to incorrect imposition of the supplementary constraint 
(3.2). I n  all the simulations reported here, the finite-difference form of (3.2) is 

t Note added in proof. Implicit time-differencing methods suitable for Galerkin 
approximations will be discussed in a later paper. The crucial factct is that convective 
numerical instabilities originate from the convection of small scales by large ones, an 
effect that is conveniently isolated and treatad implicitly in the Galerkin (collective 
co-ordinate) framework. 

7 F L M  49 
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imposed exactly (except for round-off error) by use of the fast Fourier transform, 
to solve the finite-difference Poisson equation for p .  Likewise, the cut-off Fourier- 
expansion simulations impose incompressibility exactly. Round-off error never 
accumulates appreciably in the simulations reported here, because of the high 
digital accuracy of the CDC 6600, so that the methods developed by Harlow & 
Welch (1965) and Piacsek & Williams (1 970) to reduce incompressibility errors 
need not be applied. Incompressibility errors never exceed 1 part in 1 011 in single- 
precision calculations. 

(iv) Boundary errors 

Incorrect imposition of boundary conditions is a frequent cause of poor simula- 
tion. In  the simulations reported in this paper, only periodic boundary conditions 
are applied and these are applied exactly. However, the spirit of the Galerkin 
method is to ensure that boundary conditions are imposed correctly (Orszag 
1971a, b) ,  which is not always possible with finite-difference methods. The 
problems are particularly acute if the equations are essentially hyperbolic so 
that boundary errors are not damped as they propagate into the domain of flow. 
Clearly, the nature of boundary errors in both finite-difference and Galerkin 
schemes requires much further investigation. 

(v) Aliasing errors and blocking 

The nature of these errors is most elusive and, in the author's opinion, has not 
been given adequate explanation in the literature. It is hoped that the discussion 
below will clarify some of the salient features of aliasing, though it is clear that 
this discussion will not be the last word on the subject. 

The values of the arbitrary functionsf(x), g(x) at N equally spaced grid points 
x, = Znn/N (n = 0, 1, ..., N -  1) are expansible in the discrete Fourier series (cf. 

where k is an integer satisfying - K < k < K with N = 2K or - K < k < K with 
N = 2K + 1. The product function h(x)  = f(x) g(x) has the value h, = f,g, at 
x,, and the expansion 

h, = C w(k)exp (ikx,) (n = 0, ..., N -  l) ,  (4.8) 
IklGK 

The last two terms in (4.9) arise because exp(ik'x,) = exp(ikx,) for all 
n = 0, ..., N -  1 if k' = k (modulo N ) .  

Aliasing is usually explained by noting that f(x), g(x), h(x)  have the exact 
Fourier expansions 

(4.10) 

where the sum is taken over all integers k, 0 < 2 < 2n, and 
( f ( ~ ) ,  g ( 4 ,  Nx)) = W ( k ) ,  v(k), z(k) )  exp ( ikx) ,  

(4.11) 
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(It should be noted that U, TI, W are, in general, not equal to u, v, w, respectively.) 
It is apparent from (4.11) that the exact w(k)  includes no counterpart of the last 
two terms in the expression (4.9) for w(k). The false interactions included in the 
last two terms in (4.9) are called aliasing interactions; k + N  and k - N  are 
aliases of k on the discrete grid x,, since exp [ i ( k +  N ) q ]  = exp [ikx,] for 
n = 0, . . . , N - 1. A finite-difference approximation to the Navier-Stokes equa- 
tions (3.1) may lead to difficulty, because of aliasing errors in the discrete-grid 
approximation of the (scalar) product of v with Vv. Phillips (1959) gives a simple 
example where aliasing terms in the representation of a product induce an in- 
stability not present without aliasing. 

The foregoing discussion of aliasing is deficient in several respects, notably 
the reason for believing that aliasing is an error. There is nothing in the above 
argument that explains why the last two terms in (4.9) lead to inaccuracies of a 
finite-difference scheme, and why the simulation would be more accurate if 
these terms did not appear. In  fact, if the differential equation to be solved is 

8v(x, t ) p t  = - [v(x, t ) ] 2 ,  (4.12) 

in which x is just a parameter, the presence of aliasing ‘errors’ ensures that a 
finite-difference approximation gives exact results except for time-differencing 
errors. The finite-difference approximation, 

wx,, t )Pt  = - [V(Z,, u2, 
is obviously exact, since there is no propagation from point to point. If the 
aliasing terms were dropped in the respresentation (4.9) of the Fourier co- 
efficients of [v(z,, t)I2,  the numerical approximation to the solution of (4.12) 
would not be exact in the limit At --f 0. In  other words, significant errors are 
possible in an alias-free numerical scheme. While Phillips’s example shows that 
aliasing interactions may induce instability, it is also possible to construct an 
example of a bounded system in which leaving out the aliasing interactions 
induces instability ! 

A more convincing explanation of the error involved in aliasing is based on 
an extension of an argument due to Platzman (1961). We consider the ‘best’ 
approximation to h(x) = f(x) g(x) given only certain finite amount of information 
about f(x) and g(x). If the function values f(x,) and g(x,) on a discrete grid are 
known exactly, then the best approximation to h(x) on the same discrete grid is 
obviously h(cc,) = f(x,)g (x,). However, in the simulation of solutions to partial 
differential equations in which information can propagate from point to point 
(as in (3. l), because of the presence of spatial derivatives), the values off(%,) and 
g(x,) determined by a finite-difference scheme are usually not exact. In  this case, 
the ‘best’ approximation to h(x) at the grid points x, need not bef(x,) g(x,). 

When the function values f ( x n )  and g(z,) may be inexact, it is reasonable to 
seek the ‘best’ approximation to h(x) = f(x) g(z) as the best approximation in 
mean square to h(x). By (4.7), the function values f(xn),  g(x,) on the discrete 
grid determine values of theFourier coefficients u(k) ,  w(k) for lkl < K .  The best 
mean-square approximation to h(x) is not determined unless something is known 
about the Fourier coefficients u(k) ,  w(k) for Ikl > K .  It is convenient to postulate 

7-2 
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that the finite-difference (or Galerkin) method determines u ( k ) ,  v(k) for Ikl < K 
(which need not be the exact i i ( k ) ,  Z(k)), but that the Fourier coefficients for 
lkl > K are random. It is assumed that u(k), v(k) for lkl > K have zero mean and 
are distributed independently for distinct k subject only to the reality constraint 
u ( k )  = [u( - k)]*. The latter statement about the distribution of u ( k ) ,  v(k) for 
Ikl > K is reasonable in view of the assumption that no information other than 
u(k ) ,  v(k) for Ikl < K is known aboutf(x), g(x) from the numerical simulation. 

With these assumptions, the best average approximation &(x) to f(x) g(x) is 
found by minimizing the quantity, 

using the assumed properties of u(k), v(k). It is apparent from (4.14) that the 
&(x) that minimizes I has 

44  = c U(P)V(P) (4.15) 
p+q=k 
IPl, IczlG~ 

for ( k J  6 K ,  i.e. the alias-free form of the Fourier coefficients (4.9). (Note that 
@(k) is given by (4.15) for all k, so that @x,) =f(x,)Q(x,) where 

Ax, )  = %G&k) exp (ikx,), 

etc. However, f(x,) +f(x,), in general.) If only the N data w(k) (lkl < K )  are 
admissible, then the alias-free convolution sum (4.15) gives the best average 
representation of f(x) g(x). 

In  summary, we find that the alias-free sum (4.15) is, in the special sense out- 
lined above, the best approximation to the Fourier coefficients of the product 
f ( x )g (x ) .  In  other words, the best mean-square approximation to a product is 
not necessarily the product of the best mean-square approximations, but rather 
the alias-free product. 

The error induced by aliasing is illustrated by the cone problem studied in Q 2. 
The 'fully aliased' Fourier coefficients of the Jacobian J($ ,  A )  are given in 
analogy to (4.9) by replacing the interaction coefficients I(klp, q) that appear in 
(2.21) by their aliased counterparts 
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where N = 2 K ,  and m = (ml,mz). The contours obtained by this fully-aliased 
Fourier-space calculation are shown after & revolution in figure 7. The errors 
at  the leading edge of the cone are due to aliasing errors, but may be confused 
with leading phase errors (which do not exist for this calculation because there 
are no first-differencing errors). Between and + revolution, the fully aliased 
Fourier-space calculations are subject to non-linear instability, and cannot be 
continued. Comparison of figure 7 with figure 2 ( e ) ,  obtained by the alias-free 
equation (2 .21)  with I(klp, q), shows that aliasing is indeed an error. 

- 1  1 1 1 1 " 1 1 1 1 1 1 1 1 1 1 1 ' 1 1 1 1 ' 1 1 1 1 1 1  
15 
Ih 
- - 1  

F I G ~ E  7. Contours of A(x, t )  obtained after f revolution using the fully diased 
Fourier-space equations on a 32 x 32 grid (cut-off K = 16). Initially, r = ). 

The fully aliased equations may be useful for Navier-Stokes flow simulations. 
If a fully aliased approximation to the Navier-Stokes equations is obtained by 
computing w(x, t )  using a discrete Fourier series and local physical-space multi- 
plication in v(x, t )  x w(x, t )  in (3.4), energy is semi-conserved. These fully aliased 
Fourier-expansion equations have aliasing interactions included at full strength, 
but there are no first- or second-differencing errors or non-linear instabilities 
attributable to aliasing. 

The energy-conserving finite-difference schemes discussed in $3 2, 3 have 
aliasing errors (Lilly 1965; Grammeltvedt 1969), but they are not susceptible to 
aliasing instability. As mentioned in 3 3, aliasing errors usually increase with 
increasing order of the scheme, just because first derivatives are evaluated more 
accurately and hence aliasing interactions among high-frequency modes have 
larger interaction coefficients. The fully aliased interactions in (4.16) are the 
limiting case of generalizing finite-difference schemes to Nth order on an 
N x  ... x N space grid. 
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The alias-free version of the Fourier-expansion method has none of the errors 
(i)-(iv) listed above, nor does it have aliasing errors, as only convolution sums 
of the form (4.15) are involved. The only error of the alias-free scheme may be 
called blocking or damming-up. This is the error involved in truncating the 
representation (2.14) at K ,  and disallowing all interactions with wave vectors 
beyond the cut-off. Evidently, the results of $32, 3 show that blocking is a less 
serious error than those suffered by other numerical schemes. 

Aliasing and blocking errors limit the Reynolds number at which accurate 
simdation of flows with energy cascade is possible (cf. e.g. Orszag 1969, SIVc). 
As the Reynolds number increases, aliasing and blocking errors increase, as 
shown quantitatively for the Taylor-Green problem by comparison of figures 6 (a) 
and 6 ( b ) .  In  order to simulate numerically high-Reynolds-number flows with 
energy cascade, it is necessary to account for energy transfer to scales smaller 
than those retained in the simulation (‘sub-grid-scale turbulence ’), perhaps by 
use of an eddy viscosity coefficient. 

5. Theoretical investigation of accuracy : passive scalar convection 
It is possible to give a rather complete mathematical explanation of the 

improved accuracy of spectral methods for the passive scalar problem (2.1) with 
the special choice of time-independent convecting velocity field, 

Wl(X1, x2) = 1, 2)2(51,z2) = 1 +f(zA (5.1) 

where f(z + 27~) = f(x) and 

Jo2~f(z)dx = 0 (5.2) 

(P. D. Lax 1970, private communication). The choice of non-zero constant terms 
in (5.1) is not crucial to what follows. Since (2.1) states that A(x,  t )  is constant on 
particle orbits, and (5.1), (5.2) imply that the orbit through (zl, x2, t )  also passes 
through (xl + 2n, x2 + 2n, t + 2n), it follows that 

A(z1+27T,x,+2n,t+2n) = A(z, ,z , , t ) .  (5.3) 

If the initial A(x, 0) field is periodic with period 277 in z1 and x2, then (2.1), with 
the periodic velocity field (5.1), implies that A ( x , t )  is periodic in x for all t. 
Consequently, (5.3) implies 

for all spatially periodic fields. That is, the initial scalar distribution A(x, 0) recurs 
after a, time of 2n. 

A(x , t+2n)  = A ( x , t )  (5.4) 

If (2.1) is rewritten in the formal operator form, 

f3A(x, tyat = - iL(x) A(x, t ) ,  (5 .5 )  

where the linear operator L(x) accounts for the convective terms, then it follows 
from (5.4) that L(x)  possesses a complete set of eigenfunctions A,(x) satisfying 

L(x) A?&) = nA,(x), (5-6) 
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where the eigenvalue n and label p are both integers. The general periodic 
solution to the initial-value problem (2.1) with v given by (5.1) is 

where the expansion coefficients anP are determined by A(x, 0). 

A,,(x) are of the form, 

where the conflicting notation A ,  should cause no confusion. The explicit 
eigenfunction determined by (5.6), (5.8) is 

Since the convecting velocity (5.1) is independent of x,, the eigenfunctions 

Anp(x) = Anp(z1) ~ X P  (t~zz), (5-8) 

(5.9) 

Finite-difference and spectral methods for solution of (2.1) with (5.1) may be 
put in the form ( 5 4 ,  with L(x) replaced by an approximation L. While L(x)  
is clearly an unbounded (differential) operator, each of the approximations E 
are finite-dimensional linear-operator approximations to L. If there are Nl N, 
independent degrees of freedom in the numerical simulation of (2.1) (e.g. Nl 
grid points along the x1 axis and N, along the x, axis), then the corresponding E 
may be realized as an (NIN,) x (NIN,) matrix. Each of these matrices has at most 
NIN, eigenvalues and eigenvectors, in terms of which the general solution to the 
semi-discrete (i.e. spatially but not temporally discretized) initial-value problem 
may be expanded, as in (5.7). The faithfulness of these eigenvectors and eigen- 
values to those of the exact problem (in the corresponding grid, Fourier, repre- 
sentation) gives a direct measure of the errors in simulation (aside from 
time-differencing errors). The eigenvalues and eigenvectors of matrix representa- 
tions of various E were determined by the Q-R algorithm (Wilkinson 1965), in 
order to reach quantitative conclusions of the relative accuracy of various 
numerical methods. 

The homogeneity in x, of the convecting velocity field (5.1) gives approxima- 
tions with eigenvectors whose x, dependence (in x representation) is pure 
complex exponential as in (5.8). Consequently, the eigenvalues of L may be 
determined independently for independent integral values of the x2 wave- 
number p .  This factorization of the matrix is important to obtain matrices of 
tractable size (viz. Nl x Nl instead of (N,N,) x (NlN2)) before application of 
the Q-R algorithm. 

A convenient, though arbitrary, definition of eigenvalues and eigenvectors 
‘faithful’ to those of the exact problem is: (a)  an eigenvector is faithful to an 
eigenvector A,(x) of the exact problem, if the approximate eigenvector lies 
within 45’ of the projection of A,(x) into the space of approximating functions; 
and (b )  the approximating eigenvalue AnP is faithful for q recurrence times of the 
system if 2nqln - h,,l< 1. The latter definition is reasonable, since q recurrences 
of the system require a time 2nq, and 2n-qln-AnPI < 1 is the condition that the 
phase error in the mode not exceed 1 radian over this time interval, so that the 
mode is faithfully accounted for in the approximate form of (5.7). 
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In  figure 8 (a) ,  we plot those modes (labelled by n, p )  given by the second-order 
staggered-mesh approximation (2.13) to (2.1) that are faithful to the exact modes 
withf(z) = sin(z) in (5.1). All modes lying inside the curves labelled 1 and 10 
in figure 8(a )  are faithful for q = 1 and q = 10 recurrences, respectively. These 
curves were determined from a compilation of eigenvalues and eigenvectors for 
the numerical scheme applied on 32 x 32 (K = 16), 64 x 64 (K = 32), and 100 x 100 

:T 

I 
I 

I P  
K 

- K  
- K 1  I 

FIGURE 8. Eigenvalues of (a) second-order staggered-mesh, ( b )  cut-off Fourier-expansion 
scheme for passive scalar convection by the periodic convecting velocity (5.1) with 
(z) = sin (2). Modes with label (n, p )  lying within curve marked 1 in (a )  are faithful to 
the exact eigenmodes for q = 1 recurrence; that marked 10 in (a),  ( 6 )  are faithful for q = 10; 
marked 1000 in ( b )  are faithful for q = 1000. 

(K = 50) spatial grids, where K is the cut-off frequency in the discrete Fourier 
representation of the A(x) field. The region of figure 8(a)  containing modes 
faithful for 1 recurrence is approximately given by 

+ 1111 < *K. (5.10) 

For fourth-order schemes, the coefficient + in (5.10) is increased to about 8. 
The corresponding faithful eigenmodes given by the cut-off Fourier-expansion 

method are plotted in figure 8 ( b ) .  The n, p values lying within the curves labelled 
10 and 1000 give modes faithful to the exact modes for 100 and 1000 recurrences, 
respectively (in the absence of time-differencing errors). These regions of faithful 
modes are quite closely given by 

b-PI + IPI 6 K-  (5.11) 

The theoretical basis for (5.11) is explained as follows. With f(x) = sin (z), the 
exact eigenmodes are 

A,&,) = exp [i(n - p )  z1 + ip cos (341 
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by (5.9). The Fourier coefficients of Anp(xl) are given exactly in terms of Bessel 
functions as 

Since the cut-off Fourier-expansion method includes only modes up to the cut-off 
K ,  accurate representation of the eigenmode An&,) requires that A,(k) be 
rapidly decreasing and small for Ikl 2 K.  However, the Fourier coefficients (5.12) 
decrease rapidly with llcl for ( k f p - n l  2 IpI provided Ikl 2 ln-pl. It is easy 
to see that this condition for rapid decreaseof the Fourier coefficientsof A,(x,) is 
satisfied if (5.11) holds. Consequently, the eigenvectors and eigenvalues should be 
accurately described by the cut-off Fourier-expansion scheme if (5.11) is satisfied. 

The results just described for f(x) = sin@) are representative of those for 
rather general f ( x ) ,  despite an apparent bias of the choice sin (x) towards the 
Fourier method. Results not differing substantially fiom those stated above were 
obtained for the choice f ( x )  = 1x1 (-n- < x < n-), f(x+ 274 =f(x), which has a 
rather slowly converging Fourier series. 

The results (5. lo),  (5.11) imply that second- (fourth-) order finite-difference 
schemes require at  least 5(3) times as many degrees of freedom in each space direc- 
tion as the Fourier-expansion method to achieve the same reasonable accuracy.t 
The estimated factor 5 is somewhat larger than found in $32, 3, indicating the 
conservative nature of these latter estimates. Also, very few modes lie in the region 
between the q = 1 (not drawn) and q = 1000 curves in figure 8 (b) .  Consequently, 
aside from time-differencing errors, very few modes are ‘lost’ by the Pourier 
method between 1 and 1000 recurrences. About half the total 4K2 modes lie 
within the region (5.1 l), so that between t = 0 and the first recurrence about half 
the modes (those outside the region (5.11)) are ‘lost’ due to phase mixing of 
incorrect frequencies. After that, modes are lost very slowly, so that the calcula- 
tion hardly deteriorates at  all between, say, 1 and 1000 recurrences (except for 
the increasingly disruptive effect of time-differencing errors that probably make 
accurate simulation of 1000 recurrences quite impractical). On the other hand, 
about 98 yo of all modes lies outside the curve labelled 1 in figure 8 (a),  so that 
98% of all modes are lost in the second-order simulations before the first re- 
currence. Thereafter, the noticeable difference between the q = 1 and q = 10 
curves in figure 8 (a) ensures that modes are continually lost by phase errors in 
the fmite-difference schemes and long-time simulations are ruled out. 

The above conclusions seem to hold true for quite general velocity fields with- 
out stagnation points (e.g. (5.1)). For convecting velocity fields with stagnation 
points, the exact eigenvalue spectrum is continuous and the analysis considerably 
more complicated. The eigenvalue analysis of passive convection by velocity 
fields with stagnation points will be presented in a later publication. 

We have also repeated the ‘cone’ experiments of $ 2  using the convecting 
velocity field (5.1) with f ( x )  = sinfx). The cone (2.5) was chosen centred at  
x,, = - &r with base radius T = in, as shown in figures 1 , 2  (when the co-ordinate 
axes are scaled by n-). The effect of the velocity field (5.1) is to convect, squeeze, 

t See dso  Orazsg (1971~). 
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and stretch the cone, while (5.4) implies that the circular cone should be reformed 
at  intervals oft = 2n. The results for A ( x ,  277) at a time of 1 recurrence using the 
second-order staggered-mesh scheme (2.13) on a 32 x 32 grid are contoured in 
figure 9 (a).  Quite clearly, the squeezing and stretching has deformed the initial 
cone almost out of recognition; the grid-point maximum of A(x,  en) is 0.44 and 
the maximum is lagging its correct position by Ax, = -0.6 (with periodicity 
interval 2n). At the same time, the cone given by the fourth-order Arakawa 
scheme on a 32 x 32 grid is utterly unrecognizable. 

The results of A ( x ,  10n) and A ( x ,  +J) after 5 recurrences as determined by the 
cut-off Fourier-expansion scheme on a 32 x 32 space grid (cut-off K = 16) are 
contoured in figure 9 ( b ) .  After one recurrence, the grid-point maximum is 
0.92; after five, the grid-point maximum is 0.91. There is virtually no lag of the 
maximum, and the cone has remained quite well localized in space. 

t 

t=2n 

1 I- 

I- 

ll 
FIGURE 9. Contours of A(x,  t )  obtained after (a) 1 recurrence using the second-order 
staggered-mesh scheme on a 32 x 32 grid (contours are those of A = 0-2, 0.4); (b )  5 re- 
currences ( t  = 10~) and 516 recurrences ( t  = z+r), using cut-off Fourier-expansion scheme 
on 32 x 32 grid. Periodic convecting velocity is (5.1) with&) = sin (5); initial radius of the 
cone is r = &?T. 

6. Comments and conclusions 
In  most cases, simulations using the cut-off Fourier-expansion method re- 

quire more computer time than finite-difference simulations involving the same 
numbers of independent degrees of freedom. However, in those cases where 
efficient transform methods have been invented, the relative slowness of the 
Fourier-expansion simulations is much less than the relative inaccuracy of the 
finite-difference simulations. In  order to achieve a reasonable standard of 
accuracy, the cut-off Fourier-expansion method requires considerably less resolu- 
tion (and, hence, computer memory), and somewhat less computer time, than do 
finite-difference simulations. 

For example, the two-dimensional scalar-convection simulations reported in 
$ 2  required roughly 0.06 8 per time step for the second-order staggered-mesh 
scheme, 0-08 s per step for the second-order Arakawa scheme, 0.13 s per step for 
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the fourth-order Arakawa scheme, and 0.3s per step for the cut-off Fourier- 
expansion scheme, all on 32 x 32 ( K  = 16) grids. These calculations were per- 
formed on the CDC 6600 at the National Center for Atmospheric Research; all 
the codes were written in Fortran with comparable care. If a machine-language 
fast-Fourier-transform routine is used, the speed of the cut-off Fourier-expansion 
method is increased by about a factor 2. 

The Taylor-Green vortex-decay calculations reported in $ 4 are actually per- 
formed more efficiently using the Fourier-expansion scheme than by finite- 
difference methods on the same space grid, because of the symmetries of the 
vortex (cf. Orszag 1971a, $5). On a 32 x 32 x 32 grid (cut-off K = 16), thecut-off 
Fourier-expansion scheme requires just 4.2 s per time step (using a Fortran fast- 
Fourier-transform routine). However, neglecting the speed-up attributable to 
the symmetries, the cut-off Fourier-expansion method for solution of the Navier- 
Stokes equations is about a factor 2 i  less efficient than the second-order staggered- 
mesh scheme for three-dimensional simulations involving the same numbers of 
degrees of freedom, and about a factor 2 less efficient for two-dimensional simula- 
tions involving given numbers of degrees of freedom. The most efficient three- 
dimensional simulations use the isotropic-truncation transform method of 
(1971 a, appendix IV; see also Patterson & Orszag 1971). 

The relative inefficiency of the cut-off Fourier-expansion method on grids of 
the same a priori resolution as those used for fkite-difference simulations is not 
disqualifying. First, the computation times should be compared on grids such 
that the overall accuracy of the various simulations are comparable. In  this case, 
the cut-off Fourier-expansion method is decidedly superior. For example, using 
Fortran programs on the CDC 6600, it takes about 5 s per time step with the cut- 
off Fourier-expansion method on a 16 x 16 x 16 grid (cut-off K = 8), and about 
2s  per time step for a 16 x 16 x 16 staggered-mesh calculation, in both cases 
neglecting any speed-up attributable to symmetries or machine-language fast 
Fourier transforms. However, the K = 8 Fourier-space calculation is at least 
equivalent in terms of accuracy with a 32 x 32 x 32 staggered-mesh calculation. 
The latter calculation would require at least 8 x 2 = 16 s per time step, which is 
a very optimistic estimate, because the calculation can no longer be done within 
the high-speed memory (capacity N 5 x lo4 words) and peripheral devices must 
be employed to store some of the dynamical variables. Using a machine-language 
fast Fourier transform, reasonably accurate simulations require nearly an order- 
of-magnitude less computer time and memory using the Fourier method than 
using finite-difference methods. 

Secondly, the next generation of computers will be much faster than those 
presently available, but present indications are that the amount of addressable 
high-speed storage will not be increased very much. Since the amount of high- 
speed storage, not computer speed, is usually the most limiting factor on com- 
puters such as the CDC 6600, it seems that memory requirements will remain 
critical in the near future. In  this case, the cut-off Fourier-expansion method 
offers the significant advantage that it gives the most accuracy for a given 
number of degrees of freedom. Thirdly, the fact that the Fourier method gives 
infinite-order accurate approximations to infinitely differentiable solutions of 
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the equations of motion implies that very accurate (or moderately accurate long- 
time) simulations are more easily obtained than with finite-difference methods. 

Transform methods to speed the evaluation of Galerkin equations are known 
to apply in the following cases : 

(i) Periodic and free-slip boundary conditions on flows within rectangular 
boundaries, using Fourier expansions (Orszag 1969, 1971 a; Patterson & Orszag 
1971). 

(ii) Rigid no-slip or free-slip boundary conditions on flows within slab, spherical, 
or cylindrical geometries using expansions in Chebyshev polynomials (Orszag 
197 1 b) .  Galerkin (Chebyshev) simulations are also efficiently implementable 
with stretched (boundary-layer) co-ordinate systems. Flows within rather 
arbitrary geometries may be efficiently and accurately simulated using Chebyshev 
expansions after mapping the domain of flow into a simple standard domain. 

(iii) Flows on the surface of a sphere using Galerkin approximations obtained 
from truncated expansions in surface harmonics (Orszag 1970). 

(iv) Simulation of sub-grid-scale turbulence using an eddy viscosity coefficient 
(Smagorinsky 1963) is efficiently accomplished within spectral methods by first 
using collocation to evaluate the eddy viscosity at  selected points in physical 
space, then using transform methods to evaluate the dissipation term with a 
non-constant viscosity coefficient. In  general, the method of ' pseudo-spectral ' 
approximation advocated in Orszag (1971a, 98) consists mainly of the idea of 
maintaining flexibility between spectral and grid representations. Complicated, 
highly non-linear, but physically local terms are evaluated locally in physical 
space, while differentiations are performed locally in spectral representation in 
order to minimize phase errors. 

Another important application of the Fourier-expansion method is also under 
investigation (Fox, Fulker & Orszag, manuscript in preparation). In  this work, 
the Navier-Stokes equations are solved in slab geometries for a variety of 
boundary conditions, using a mixed Galerkin-finite-difference method. The 
horizontal (xl, x2) dependence of the motion is Fourier transformed and a Galerkin 
(Fourier) approximation is made. The vertical (xs) dependence is treated using a 
staggered-mesh finite-difference approximation. The resulting numerical scheme 
has a number of attractive features, including its suitability for buffered simula- 
tions in which calculations are performed on one (xl, x2) plane at a time, and the 
property that it semi-conserves energy. The mixed Galerkin-finite-difference 
method is well suited for major thermal convection and shear fiow calculations. 

In conclusion, we have demonstrated that Galerkin methods, in particular 
those using cut-off Fourier-expansions, are an attractive alternative to finite- 
difference methods for numerical simulation of many of the flows of current 
interest. The Galerkin equations, coupled with transform methods for their 
efficient evaluation, offer the advantages of improved accuracy and efficiency 
in comparison with finite-difference methods. 
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Appendix 
In  the appendix, we indicate the minor modifications in the transform methods 

of Orszag (1971a) that are necessary to evaluate the right-hand side of (2.21). 
We indicate the modifications only for the transform method given in (1971a, 
appendix 111); analogous modifications apply to the transform methods of 
(1971 a, 4 3). Detailed proofs of the algorithms stated in this appendix will be given 
elsewhere. 

The object is to evaluate the right-hand side of (2.21), viz. 

where we write I(klp, q) given by (2.23) in the alternative form 

in order to effect some economy in the algorithm. The notation is explained 
following (2.20) and (2.23). The evaluation of (A 1) essentially involves the 
evaluation of two convolution sums, one between inpz$(p) and A(q),  the other 
between in-pl$(p) and A(q), with the results multiplied by in-& and in-E2, re- 
spectively, to give Z(k). I(klp, q) is rewritten in the form (A 2) so that only one 
set of transforms of A(q)  need be performed. The form (A 2) corresponds to 
rewriting the dynamical equation (2.3) in conservation form. 

The basic result is that the additional terms appearing in the algorithm of 
Orszag (197 1 a, appendix 111) due to wave vectors with components equal to - K 
should be treated as if the components are equally + K ,  - K .  Thus, we introduce 
the three sets of 9 discrete Fourier transforms on K x K points 

As(j) as@) 
Us(j) = 2 us(k) exp(Znij.k/K) (0 G j < K ) ,  (A 3) 

{Vs( j j  [vs(k) 

where 0 < k < K means 0 6 k, < K for cc = 1,2, and the nine vectors s = (a1, s2) 
have components sl, s2 = 0 ,1 ,2 .  The fields as(k), us(k), wS(k) (0 < k < K )  are 
defined by 

I exp ( -  2n-ir1s1/3) exp ( -  2n-ir,s2/3) 

x A(k- rK) exp C2n-i~. k/(3K)], 

Re [exp ( - 2n-ir,sl/3)] Re [exp ( - 2n-ir2s,/3)] 

(A 4) 
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in@,- r,K) exp ( - 27rir,sl/3) exp ( - 2nir,s2/3)\ 

= (Re[ ...I ){Re[ . . . I  I 

x $(k- rK) exp [Znis. k/(3K)], (A 5) 

I exp ( - 2nirls,/3) r,K) exp ( - 2n-ir2s2/3) 
vs(k) = ?(Re[ ...I 

x $(k- rK) exp [27ris. k/(3K)], (A 6) 

where the four vectors r = (r,, r,) have components r,, r2 = 0 , l .  Here the lower 
term in each of the two curly brackets in (A 4)-(A 6) applies only if the corre- 
sponding ri and k, satisfy ri = 1, k, = 0. For example, if s = (0,O) and 0 < k, < K, 
then uB(O, k2) = 0;  if s = (1, 1)  and 0 < k, < K, then 

us(O,k,) = -Ks in(2n/3)exp[2nik2/ (3K)]  C exp( -27rir2/3)$(-.K, k 2 - T 2 K ) .  

It should be noted that the 27 fields a*(k), uS(k), va(k) are each half-complex in 
the sense of Orszag (1971a, (111, 5 ) ) ,  since $, A satisfy (2.16). Therefore, the 27 
discrete Fourier transforms As(j), Ua(j), P ( j )  defined by (A 3) are each real. 

Finally, it  may be shown by straightforward, though lengthy, algebra that 

1 

ra=O 

- exp [ - Snis, k,/( 3K)] [ - Znis, k2/( 3K)] 
= [gK2n(k1) .(k2)1-1 (T (Re [. . 

ink, exp [2nis,k1/(3K)] 
x 

X (Re[ ...I 

AS(j) Us(j) exp ( -  27rij. k’/K) - 
O<j<K 

exp [ - 2nis2 k,/( 3K)] 

where k.; = kiif 0 < ki < K ,  k; = k,+Kif - K  < ki < 0 (i = 1,2), and thelower 
quantities in curly brackets equal the real part of the upper quantity in the 
corresponding bracket and are to be taken only if the corresponding value of 
k, (i = 1,2) is -K.  Note that (A 7) involves a total of 18 discrete Fourier trans- 
forms of K x K real data. 

Equations (A 3)-(A 7) are the generalization of the transform method of 
Orszag (1971 a, appendix 111) to the evaluation of (A 1). The modifications of the 
original algorithm contained in (A 3)-(A 7)  are: (a)  if some components of k 
equal -K ,  the phase shifts in (A 4)-(A 7) are taken for those components with 
real parts only (in order to maintain conditions analogous to (2.16)); and (6)  if 
some components of k equal - K ,  the result for G(k) is multiplied by a corre- 
sponding factor 2 (as accounted for by the factors n(k,) in (A 7)).  The modifica- 
tions made in this way also convert the algorithm of Orszag (1971a, $3 )  to the 
evaluation of (A l), and they work for quite general convolution sums of the 
sort encountered in (1971a, $92-5, 7). 

The algorithm (A 3)-(A 7) involves 45 real (or half-complex) discrete Fourier 
transforms on K x K points in order to evaluate exactly G(k) for I] kl] < K .  If the 
transforms Us(k), P (k)  are computed and stored before the start of the evolution 
calculation using (2.21) (as would be convenient if the convecting velocity field 
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is time independent), then only 27 transforms on K x K points need be performed 
each time step. Under the same conditions, the transform method of Orszag 
(1971 a, 3 3) requires 12 real (or half-complex) Fourier transforms on 2K x 2K 
points, i.e. roughly as many calculations as in the algorithm described here. 
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